标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包括序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数:0;3,8,15;24,……。试按此规律写出的第100个数是1002-1,第n个数是n2-1。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较: 给出的数:0;3,8,15;24,……。 序列号:1;2;3, 4, 5,……。 容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项n2-1,第100项是1002-1。公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n有关。 例如:1,9;25;49,(81),(121),的第n项为( (2n-1)2 ), 1;2;3;4;5......,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推