微分方程的通解和特解怎么求

127次

问题描述:

微分方程的通解和特解怎么求,麻烦给回复

最佳答案

推荐答案

微分方程的通解和特解:微分方程的通解中一般包含任意常数,微分方程的特解一般包含特定常数。

例如xy'=8x^2的特解是y=4x^2,xy'=8x^2的通解是=4x^2+C,C是任意常数。计算微分方程的通解有许多方式,例如特征线法,以及特殊函数法和分离变量法。对于非齐次方程来说,任何一个非齐次方程的特解,加上一个齐次方程的通解,能够得出非齐次方程的通解。微分方程的研究来源非常广泛,拥有较长时间的历史。牛顿以及莱布尼茨创造微分,以及积分的运算的时候,指出了两者的互逆性,这是如何解决最简易的微分方程y'=f(x),如何求解的方法。当大众用微积分去研究几何学以及物理学,还有力学问题的时候,微分方程不断涌现,如井喷一般。牛顿已经解决了二体问题,在太阳的引力作用下,一个单一的行星是怎样运动的。牛顿把这两个物体都进行理想化设想,作为质点,得出三个未知函数的三个二阶方程组,通过简单的运算证明,能够变为平面问题,也就是两个未知函数的两个二阶微分方程组,用名为首次积分的计算方法,解决了如何求解。

其他答案

由于通解中带有一些不确定的常数,我们常常要根据实际的情况来加强约束来得到这些常数。

比如我们前面的例子,一个函数的图像的任意一点的斜率,等于这个函数在那一点上的x坐标值。光凭借这个条件,我们只能解出y=0.5x²+C的通解。

但如果要进一步解出C,我们就需要加强约束,比如一个通过原点函数的图像的任意一点的斜率,等于这个函数在那一点上的x坐标值。

这样我们只能令C=0,得出y=0.5x²。这里面不再有未知常数,我们称之为微分方程的特解。

其他答案

求满足初始条件的特解时,不是先求出整个的通解再代入初始条件,而是相反。往往是定出解的结构,用与微分方程对应的微分方程的通解作为通解的一部分,再找出本方程的一个特解,把二者相加求得本微分方程的通解。

微分方程的特解是指满足微分方程的一个解,它有很多个。满足初始条件的特解是指既满足微分方程,又满足初始条件的那一个特解。具体特解的求法,各不相同,有的假设成具有对应通解的形式,有的再加上某一函数,有的假设为一定形式。具体情况具体分析。

其他答案

(1)y=x (2)t^2+1=0 t=+-i y''+y=0=>y=Asinx+Bcosx y=0.5exp(x)特解y=0.5exp(x)+Asinx+Bcosx结合欧拉折线和线素场,我们就可以开始分析通解、特解和所有解了。

4 通解、特解和所有解4.1 通过欧拉折线来观察解我们通过来继续讲解。这个微分方程的通解还是很容易求的,就是:知。

因为M个变量,需要M个个约束条件才能全部解出。由此,在变量相同的条件下,多一个约束条件f(y),就可以多确定一个解,此解就称为【特解】。求微分方程通解的方法:方求一阶微分方程通解和特解注:±C也可看作新的C 一、把y'换成dy/dx,dy与y放等式左边,dx与x放等式右边,对两边同时求不定积分。对于求特解的,还要把给出的点带入。

为你推荐